ANSI/IES LM-79-19

Método aprobado:
Mediciones Fotométricas y Eléctricas
de Productos de Iluminación de
Estado Sólido (SSL)

Reservado los Derechos de Copia por la Sociedad de Ingeniería de lluminación de Norte América (IES NA)

Aprobado por el Comité de Normas de la IESNA el 28 de febrero del 2019 como un Acuerdo de la IES

Aprobado como Norma Nacional de Estados Unidos de América el 14 de mayo del 2019
Todos los derechos son reservados. No se puede reproducir ninguna parte de esta publicación de ninguna forma, en ningún formato electrónico, de lo contrario, sin el permiso previo por escrito del IES.

Publicado por la Illuminating Engineering Society, 120 Wall Street, Nueva York. Nueva York 10005.

Las normas y guías de IES se desarrollan a través del consenso del comité y se producen en la oficina de la IES en Nueva York. Se presta especial atención al estilo y la precisión. Si se observa algún error en este documento, envíe un mensaje a Brian Liebel, Director de Normas, a standards@ies.org o a la dirección anterior para verificación y corrección. La IES agradece e insta a recibir observaciones y comentarios.

Impreso en los Estados Unidos de América.
ISBN * 978-0-87995-004-0

EXENCIÓN DE RESPONSABILIDAD

Las publicaciones de la IES se desarrollan a través del proceso de desarrollo de estándares de consenso aprobado por el American National Standards Institute. Este proceso reúne a voluntarios que representan diversos puntos de vista e intereses para lograr un consenso sobre las recomendaciones de iluminación. Si bien el IES administra el proceso y establece políticas y procedimientos para promover la justicia en el desarrollo del consenso, no garantiza la exactitud o integridad de la información publicada en este documento.

La IES se exime de responsabilidad por cualquier daño a personas o bienes u otros daños de cualquier naturaleza, ya sea especial, indirecta, consecuente o compensatoria. directamente o indirectamente como resultado de la publicación, uso o dependencia de este documento.

Al emitir y poner a disposición este documento, el IES no se compromete a licitar profesionales u otros servicios para o en nombre de cualquier persona o entidad. La IES no se compromete a realizar ninguna obligación que una persona o entidad le deba a otra persona. Cualquier persona que use este documento debe confiar en su propio juicio independiente o, según corresponda, busque el consejo de un profesional competente para determinar el ejercicio de un cuidado razonable en cualquier circunstancia.

La IES no tiene poder ni se compromete a vigilar o hacer cumplir el contenido de este documento. La IES tampoco enumera, certifica, prueba o inspecciona productos, diseños o instalaciones para el cumplimiento de este documento. Cualquier certificación o declaración de cumplimiento de los requisitos de este documento no será atribuible a la IES y es responsabilidad exclusiva del certificador o creador de la declaración.

AMERICAN NATIONAL STANDARD
 (AMERICAN NATIONAL STANDARD)

La aprobación de una American National Standard requiere la verificación por parte de ANSI de que los requisitos para el debido proceso. consenso, y otros criterios han sido cumplidos por el desarrollador de estándares.

El consenso se establece cuando, a juicio de la Junta de Revisión de Normas de ANSI. Un acuerdo sustancial ha sido alcanzado por intereses afectados directa y materialmente. Un acuerdo sustancial significa mucho más que una simple mayoría, pero no necesariamente la unanimidad. El consenso requiere que se consideren todos los puntos de vista y objeciones, y que se haga un esfuerzo concertado para su resolución.

El uso de la American National Standard es completamente voluntario, su existencia no excluye en ningún aspecto a nadie, si esa persona ha aprobado las normas o no, desde la fabricación, comercialización, compra o uso de productos, procesos o procedimientos que no se ajustan a los estándares.

El American National Standards Institute no desarrolla normas y en ningún caso dará una interpretación a ninguna American National Standard. Además. ninguna persona tendrá derecho o autoridad para emitir e interpretar una American National Standard en nombre del American National Standads Institute. Las solicitudes de interpretación deben dirigirse a la secretaría o al patrocinador cuyo nombre aparece en la portada de esta norma.

AVISO DE PRECAUCIÓN _ Esta American National Standard puede revisarse en cualquier momento. Los procedimientos del American National Standards Institute requieren que se tomen medidas para reafirmar, revisar o retirar esta norma a más tardar cinco años después de la fecha de aprobación. Las personas o entidades que compran las Normas Nacionales Americanas pueden recibir información actualizada sobre todos los estándares llamando o escribiendo al American National Standards Institute.

Preparado por el Comité de Iluminación de Estado Sólido del Comité de Procedimientos de Ensayos IES

Subcomité de iluminación de estado sólido:

E. Bretschneider, Presidente del Subcomité
C. C. Miller. Vicepresidente del Subcomité

Miembros

R. C. Berger
R. P. Bergin
R. S. Berman
L. Davis
P. Elizondo
K. C. Fletcher
M. L. Grather
Y. Hiebert
J. Hospodarsky
J. Hulett
A. Jackson
J. Jiao
M. Kotrebai
B. Kuebler
S. Longo
J. P. Marella
J. Melman
E. Radkov
M. Sapcoe
G. Steinberg
R. Tuttle
J. Vollers

Miembros asesores

C. Andersen
C. A. Bloomfield
M. Boroson
B. Boudreaux
P-T Chou
M. E. Duffy
D. J. Ellis
J. Gaines
G. John
P-C Hung
T. Kawabata
J. Leland
K. M. Liepmann
J. Lockner
R. J. Lowe
J. McIntosh
R. McKim
S. Mitsuhashi
M. S. O'Boyle
Y. Ohno
E. Page
D. Park
M. Piscitelli
M. Przybyla

D. Rogers
M. P. Royer
D Ryan
G. Swiernik
T. Uchida
S. Yamauchi
G. Yu

Comité de Procedimientos de Ensayos de la IES:

B. Kuebler, Presidente
C. C. Miller, Copresidente
D.

Randolph, Secretario
J. Jiao, Tesorero

Miembros

C. Andersen	K.C. Fletcher	A. Jackson	G. McKee
R. P. Bergin	M. L. Grather	M. Kotrebai	E. Radkov
R. S. Bergman	Y. Hiebert	J. Leland	M. B. Sapcoe
E. Bretschneider	J. Hospodarsky	J. Hulett	J. P. Marella
P. Elizondo	P-C Hung	P. McCarthy	J. E. Walker
D. J. Ellis			

Miembros asesores

L. M. Ayers	J. Frazer	J. Lockner	A. W. Serrres
J. Baker	K. J. Hemmi	Y. Ohno	G. A. Steinberg
C. A. Bloomfield	S. Hua	E. Page	L. Swainston
P-T Chou	G. John	D. Park	J.S. Swiernik
M. Damle	H. Kashaninejad	E. S. Perkins	A. Thorseth
L. Davis	T. Kawabata	M. Piscitelli	R.C. Tuttle
M. E. Duffy	R. Kelley	D. Rogers	J.C. Vollers
J. J. Demirjian	K.C. Lerbs	M. Royer	Y. Zong
V. Eberhard	K. M. Liepmann	T. Schneider	

Contenido

Prefacio 1
1.0 Introducción y Alcance 1
1.1 Introducción 1
1.2 Alcance 2
2.0 Referencias normativas 3
2.1 ANSI/IES RP-16-17 3
2.2 IES LM-78-17 3
2.3 IES LM-75-01/R12 3
3.0 Definiciones 3
3.1 Intervalo de aceptación 3
$3.2 \quad$ Factor de corriente de cresta 3
3.3 Intervalo de tolerancia 3
4.0 Condiciones de prueba físicas y ambientales. 4
4.1 Generalidades 4
4.2 Temperatura 4
4.2.1 Temperatura ambiente 4
4.2.2 Medición de la temperatura ligera del controlador 4
4.3 Flujo de aire 5
4.4 Condiciones térmicas para montar productos SSL 5
4.5 Vibración 5
4.6 Luz dispersa 5
4.7 Humedad 6
5.0 Condiciones de ensayos eléctricos 7
5.1 Requisitos de suministro de energía 7
5.1.1 Forma de onda de voltaje y frecuencia 7
5.1.2 Regulación de voltaje en AC 7
5.1.3 Regulación de voltaje en DC 7
5.2 Requisitos de ensayo y circuitos de referencia 7
5.2.1 Requisitos del circuito de ensayo 7
5.2.2 Ensayo de circuito de referencia 8
5.3 Calibración del instrumento de medición eléctrica 8
5.3.1 Impedancia interna del circuito de tensión 8
5.3.2 Precisión del medidor de potencia en AC 8
5.3.3 Rango de frecuencia del analizador de alimentación en AC 9
5.3.4 Mediciones de distorsión armónica total 9
5.3.5 Mediciones de tensión en DC 9
5.3.6 Mediciones de corriente DC 9
5.4 Ajustes eléctricos 9
6.0 Preparación de Ensayos 11
6.1 Identificación DUT (Device Under Test / Dispositivo Bajo Ensayo)* 11
6.2 Manejo DUT 11
6.3 Adaptamiento 11
6.4 Pre-funcionamiento y estabilización 11
6.5 Posición de operaciones y orientación 12
6.6 Formas de onda ópticas y eléctricas 12
7.0 Mediciones del flujo luminoso total y ópticas integradas 13
7.1 Generalidades 13
7.2 Sistemas de esferas integradoras 13
7.2.1 Generalidades 13
7.2.2 Características del fotómetro y espectroradiómetro 13
7.2.3 Autoabsorción y tamaño de la esfera. 14
7.3 Sistemas de integración angular 14
7.3.1 Generalidades 14
7.3.2 Características del fotómetro y espectroradiómetro 15
7.3.3 Resolución de escaneo angular 15
7.3.4 Rango angular 16
8.0 Mediciones de intensidad luminosa o distribución fotométrica 17
angular
8.1 Generalidades 17
8.2 Características del fotómetro y del espectroradiómetro 17
8.3 Ensayo de distancia 17
8.4 Alineamiento de goniómetro 18
9.0 Mediciones de uniformidad de cromaticidad 19
9.1 Generalidades 19
9.2 Resolución angular 19
9.3 Rango angular 19
9.4 Uniformidad de color angular 19
9.5 Límite de señal y verificación 20
10.0 Medición de incertidumbre 21
11.0 Requisitos para la elaboración de los reportes 22
11.1 Contenido típico del informe 22
11.2 Condiciones no estándar o procedimientos operativos 22
Anexo A - Consideraciones de flujo de aire para ensayos de productos SSL 23
Anexo B - Corriente de alta frecuencia y Medición de la capacitancia del 26
circuito
Anexo C- Resistencia de la fuente de alimentación y dependencia de la 28inductancia.
Anexo D - Intervalo de tolerancia versus intervalo de aceptación 30
Anexo E - Beneficios de las mediciones de forma de onda 32
Anexo F - Menor intensidad luminosa para uniformidad cromática. 34
Referencias 36
*Nota del traductor

Prefacio

Este documento es una revisión del documento IES I-M-79-2008, Método Aprobado de Mediciones Eléctricas y Fotométricas de Productos de Iluminación de Estado Sólido (SSL). Se han realizado cambios para actualizar la información y proporcionar una mejor orientación basada en la información recopilada de las pruebas de aptitud asociadas con acreditaciones de laboratorios e investigación independiente. Los requisitos actualizados en este método de ensayo están destinados a reducir la variación de los resultados de medición entre los laboratorios de ensayos, mientras se minimiza la carga sobre esos laboratorios. El método se basa en una fotometría absoluta que aborda los requisitos para la medición óptica y eléctrica de productos de iluminación de estado sólido.

La estructura del documento se ha cambiado significativamente para que coincida con la estructura del documento del Comité de Procedimiento de Prueba IES aprobado.

1.0 Introducción y Alcance

1.1 Introducción

Los productos de iluminación de estado sólido (SSL) tal como se definen en este documento utilizan diodos emisores de luz, incluidos los LED inorgánicos (simplemente llamados LED) y los LED orgánicos (OLED) como fuentes de radiación óptica para generar luz con fines de iluminación. La descripción general de los LED y la iluminación está disponible en IES TM-16-17. Si bien el control de corriente constante es típico de los LED individuales, este documento aborda productos SSL integrados que incorporan control de corriente a nivel de dispositivo semiconductor; por lo tanto, los parámetros eléctricos de interés son los parámetros eléctricos de entrada del producto SSL.

Para propósitos especiales, puede ser útil determinar las características de los productos SSL cuando se operan en condiciones diferentes a las descritas en el presente método aprobado. Cuando esto se hace, dichos resultados son significativos solo para las condiciones en las que se obtuvieron y estas condiciones se indicarán en el informe de ensayo.

La información fotométrica típicamente requerida para productos SSL incluye flujo luminoso total (lúmen), eficacia luminosa (Im / W), intensidad luminosa (candelas) en una o más direcciones, coordenadas de cromaticidad. temperatura de color correlacionada (CCT) e índice de reproducción cromática (CRI). Además, las aplicaciones de iluminación especiales de productos SSL pueden necesitar datos como la intensidad radiante. intensidad de fotones, flujo radiante, flujo de fotones, eficacia radiante y eficacia de fotones. Para el presente método aprobado, la determinación de todos estos parámetros se considerarán mediciones ópticas.

Las características eléctricas medidas para los productos SSL alimentados con AC incluyen RMS* Tensión en AC, corriente en AC de RMS, potencia activa en AC, factor de potencia, distorsión de corriente armónica total y frecuencia de voltaje. Para los productos SSL alimentados por DC, las características eléctricas medidas incluyen tensión en DC, corriente de DC y potencia. Para el presente método aprobado, la determinación de estos parámetros se considerarán mediciones eléctricas.

1.2 Alcance

El presente método aprobado describe los procedimientos que deben seguirse y las precauciones que deben observarse al realizar mediciones precisas reproducibles del flujo luminoso total, radiante o flujo fotónico; energía eléctrica; eficacia del sistema; distribución de intensidad luminosa, radiante o fotónica; y cantidades de color y/o espectro de productos de iluminación de estado sólido (SSL) para fines de iluminación, en condiciones estándar. Este método aprobado cubre luminarias LED, luminarias OLED, lámparas LED integradas, lámparas OLED integradas, lámparas LED no integradas operadas con un controlador** designado por el número de identificación del fabricante o por un circuito de referencia ANSI definido. y motores de luz LED, todos los cuales se denominarán productos SSL o dispositivo bajo prueba (DUT). Los productos SSL, excluidas las lámparas LED no integradas, están diseñados para conectarse directamente a la alimentación de red de AC o a una fuente de alimentación de voltaje de DC para su operación.

Este documento no cubre productos SSL que requieren disipadores de calor externos, ni cubre componentes de productos SSL, como paquetes de LED o matrices de LED. Este documento no cubre las carcasas o luminarias diseñadas para productos SSL y vendidas sin una fuente de luz (para lo cual normalmente se usaría fotometría relativa). Este documento describe los métodos de prueba para productos SSL individuales y no cubre la determinación de la calificación de desempeño de los productos, en la cual se deben considerar las variaciones individuales entre los productos.

[^0]$\boldsymbol{*}^{*}{ }_{\text {Nota del traductor }}$

2.0 Referencias normativas

2.1 ANSI/IES RP-16-17

Nomenclatura y Definiciones para la Ingeniería de Iluminación. Nueva York: Illuminating Engineering Society; 2017. Visualización gratuita en línea: www.ies.org/standards/ansi-ies-rp-16/

2.2 IES LM-78-17

Método aprobado por IESA para la Medición del Flujo Luminoso Total de Lámparas utilizando una Esfera Integradora. Nueva York: Illuminating Engineering Society; 2017

Para mediciones que utilizan un sistema de esfera integradora, el laboratorio debe cumplir con los requisitos establecidos en el mismo.

2.3 IES LM-75-01 / R12

Guía IES para Mediciones de Goniómetros, Tipos y Sistemas de Coordenadas Fotométricas. Nueva York: Illuminating Engineering Society; 2012

Para mediciones con un sistema de goniómetro, el laboratorio debe cumplir con los requisitos establecidos en el mismo.

3.0 Definiciones

Consultar ANSI/IES RP-16-17

3.1 Intervalo de aceptación

Intervalo de valores de cantidad medida permitidos. (Ver Anexo D en el presente documento y la Guía ISO / IEC 98-4 ${ }^{2}$, Sección 3.39.)

Los resultados aceptables de una medición se encuentran dentro de un intervalo de aceptación, definido como el intervalo de tolerancia reducido por la incertidumbre expandida (95\% de confianza) de la medición en ambos límites del intervalo de tolerancia.

3.2 Factor de corriente de cresta

La relación del valor absoluto de la corriente en AC máxima dividida por la corriente en AC RMS.

3.3 Intervalo de tolerancia

Intervalo de valores permitidos de una propiedad. (Ver Anexo D en este documento, y la Guía ISO / IEC 98-4 ${ }^{2}$, Sección 3.3.5.)

[^1]Nota 2: El término intervalo de tolerancia utilizado en la evaluación de conformidad tiene un significado diferente del mismo término utilizado en estadística.

4.0 Condiciones de Ensayos Físicos y Ambientales

4.1 Generalidades

Debido a las características térmicas de los LED, los valores fotométricos, las mediciones ópticas y las características eléctricas de los productos SSL son sensibles a los cambios en la temperatura ambiente o al movimiento del aire.

4.2 Temperatura

4.2.1 Temperatura ambiente. La temperatura ambiente en la que se toman las mediciones se mantendrá a $25^{\circ} \mathrm{C}$ con un intervalo de tolerancia de $\pm 1.2^{\circ} \mathrm{C}$, medido en un punto a no más de 1.5 m del producto SSL y a la misma altura que el producto SSL. (Ver Anexo D) Por ejemplo, si la incertidumbre expandida $(\mathrm{k}=2)$ del termómetro es $0.2^{\circ} \mathrm{C}$, la lectura del termómetro será de $1.0^{\circ} \mathrm{C}$. El sensor de temperatura debe estar protegido de la radiación óptica directa del producto SSL y de la radiación óptica directa de cualquier otra fuente, como una lámpara auxiliar. Mediciones realizadas a otra temperatura diferente a esta recomendada constituye una condición no estándar y debe anotarse en el informe de ensayo.
4.2.2 Medición de la temperatura del motor ligero. Para la medición de motores ligeros, todos los componentes del mismo deben estar sujetos a las mismas condiciones ambientales, aunque los elementos del conjunto no estén conectados mecánicamente (por ejemplo, el controlador, aunque esté conectado eléctricamente, está separado mecánicamente del motor LED) (consulte LM-82-2012) ${ }^{3}$. La temperatura del motor ligero en el punto de monitoreo de temperatura debe registrarse durante el ensayo. El punto de monitoreo de temperatura debe ser identificado por la parte requerida para realizar el ensayo o por el fabricante del motor LED. La parte solicitante deberá identificar y diagramar un punto de monitoreo de temperatura del motor LED T_{b}, y un punto de monitoreo de temperatura del controlador T_{d}, si corresponde (consulte LM-82-12). Se puede usar una variedad de transductores de temperatura, como termopares o termistores (resistencias sensibles a la temperatura). Si se utilizan termistores, se calibrarán según un estándar trazable al Sistema Internacional de Unidades (SI). El transductor de temperatura se elegirá de manera que no conduzca una cantidad significativa de energía térmica lejos del motor LED. El transductor de temperatura también debe estar protegido de la luz ambiental. La temperatura se medirá con un intervalo de tolerancia de $\pm 2.0^{\circ} \mathrm{C}$. (Ver Anexo D) Los transductores de temperatura(s) deben estar unidos térmica y mecánicamente a los puntos de prueba durante toda la duración de los ensayos, según lo definido por la parte solicitante o el fabricante.

Nota: La medición del punto de monitorización de la temperatura del motor ligero descrita anteriormente se aplica a motores ligeros que no están montados en un sistema de luminaria completo. Esta medición no reemplaza el ensayo de medición de temperatura In Situ Ensayo de Medición de Temperatura.

4.3 Flujo de aire

La incidencia de movimientos de aire en la superficie de un producto SSL bajo ensayo puede alterar sustancialmente los valores eléctricos y fotométricos. El flujo de aire alrededor del producto SSL bajo ensayo debe ser tal que el flujo de aire convectivo normal inducido por el dispositivo bajo prueba no se vea afectado. Para mediciones de goniómetros que requieren movimiento del dispositivo bajo ensayo, la velocidad tangencial instantánea de cualquier punto en el DUT debe ser menor que un límite de tolerancia superior de $0.20 \mathrm{~m} / \mathrm{s}$. El Anexo A proporciona más información sobre el flujo de aire.

4.4 Condiciones térmicas para el montaje de productos SSL

El método de montaje puede ser la ruta principal para el flujo de calor fuera del dispositivo y, por lo tanto, puede afectar significativamente los resultados de la medición. El producto SSL bajo ensayo se debe montar en el instrumento de medición (p. Ej., Esfera integradora, goniómetro) de modo que la conducción de calor a través de los objetos de soporte produzca efectos de enfriamiento mínimos. Por ejemplo, cuando un producto montado en el techo se mide mediante el montaje en una pared de esfera, el producto debe suspenderse al aire libre en lugar de montarse directamente en contacto térmico cercano con la pared de la esfera. Alternativamente, el producto puede estar contenido en materiales de soporte que tienen baja conductividad térmica (por ejemplo, politetrafluoroetileno). Se puede verificar el montaje comparando el rendimiento de un DUT montado directamente en el instrumento de medición con el rendimiento del mismo DUT montado en el instrumento de medición utilizando dos cables para conectar el DUT al enchufe.

Cualquier desviación de este requisito debe evaluarse para determinar el impacto en los resultados de la medición. Además, se debe tener cuidado de que los objetos de soporte no perturben el flujo de aire alrededor del producto. Si el producto SSL bajo prueba se proporciona con una estructura de soporte designada para ser utilizada como un componente del sistema de gestión térmica de la luminaria, el producto se probará con la estructura de soporte adjunta. Cualquier estructura de soporte incluida en la medición deberá ser reportada.

4.5 Vibración

No se establecen requisitos específicos, pero las buenas prácticas de laboratorio sugieren que los productos SSL no deben someterse a vibraciones o golpes excesivos durante la estabilización, el transporte, el montaje o las pruebas.

4.6 Luz dispersa

Para las mediciones de goniómetros, la luz dispersa debe suprimirse en el entorno del ensayo, mediante el uso adecuado de acabados de baja reflectancia en superficies, blindajes y zonas desfavorables. Además, la luz dispersa se puede medir y restar de la medición del producto SSL. (Consulte IES LM-75-01 / R12 para obtener información y requisitos más detallados). La luz dispersa no suele ser un problema para mediciones en esferas integradoras; sin embargo, se debe tener cuidado para minimizar la entrada de luz externa a la esfera, por ejemplo, alrededor de productos SSL montados en una configuración (consulte IES LM-78-17).

4.7 Humedad

Los valores de humedad relativa superiores a aproximadamente 65% pueden provocar efectos de corrosión en algunos instrumentos, y valores inferiores a aproximadamente 10% pueden provocar efectos electrostáticos. Por lo tanto, la humedad del laboratorio debe ser monitoreada y mantenida entre 10% y 65%

5.0 Condiciones de Ensayos Eléctricos

5.1 Requerimientos de la fuente de alimentación

5.1.1 Forma de onda de tensión y frecuencia. Durante el funcionamiento del producto SSL, la fuente de alimentación en AC debe tener una forma de onda de tensión sinusoidal a la frecuencia prescrita (típicamente 60 Hz o 50 Hz) de modo que la distorsión armónica total o la suma RMS de los componentes armónicos (como se discutió en la Sección 5.3.4) no deberá superar el 3\% de la frecuencia fundamental durante el funcionamiento del DUT. La frecuencia suministrada debe tener un intervalo de tolerancia de $\pm 2 \mathrm{~Hz}$ desde la frecuencia prescrita.

Nota: La respuesta interna o dinámica de la fuente de alimentación en AC debe mantenerse tan baja (es decir, tan rápida) como sea posible. Una medida de esto es el tiempo de respuesta de la tensión de salida, que generalmente es de 50μ s o más rápido.
5.1.2 Regulación de tensión en AC. La tensión de una fuente de alimentación en AC (tensión RMS) aplicado al DUT debe regularse dentro de $\pm 0.2 \%$ bajo carga. La fuente de alimentación de AC tendrá una capacidad de factor de cresta actual mayor que la requerida por el DUT. Si se desconoce el factor de cresta actual de la forma de onda requerida por el DUT, la fuente de alimentación tendrá una capacidad de factor de cresta actual de al menos 10.

Nota: Para dispositivos que requieren un umbral de tensión superior a 220 V , no se requiere la capacidad del factor de cresta actual.
5.1.3 Regulación de tensión en DC. La tensión de una fuente de alimentación de DC (tensión instantánea) aplicada al DUT debe regularse dentro del 0.2% bajo carga. El componente de tensión de AC o factor de ondulación de la tensión regulada en DC debe ser inferior al 0,5\% (RMS) de tensión regulada en DC.

Nota: Factor de ondulación = [Tensión AC RMS (u onda)] / (Tensión DC), expresado como porcentaje.

5.2 Requisitos del circuito de ensayo y referencia

5.2.1 Requisitos del circuito de ensayo. Para evitar los efectos de caídas de tensión en cables o portalámparas, para las mediciones de tensión deben usarse cables de detección separados conectados en el punto donde los cables de suministro se conectan al DUT. Para una base de tipo Edison, se requiere una conexión de 4 terminales (es decir, un conector de 4 polos o conector Kelvin).

Para los productos SSL que funcionan con tensión en DC, se debe conectar un voltímetro de DC y un amperímetro de DC entre la fuente de alimentación de DC y el DUT. La potencia eléctrica de entrada (potencia) se calcula como el producto de la tensión medida y la corriente aplicada al DUT.

Para los productos SSL que funcionan con tensión en AC, se debe conectar un medidor de energía de AC entre el lado de bajo tensión del DUT y la fuente de alimentación de AC.
5.2.1.1 Resistencia máxima del circuito de ensayo. Debido a que una gran resistencia puede alterar el funcionamiento de los productos SSL que funcionan con tensión en AC, la resistencia del circuito de prueba, sin incluir la fuente de alimentación, debe ser inferior a 0,5 ohmios (Ω).

Nota: La resistencia del circuito de ensayo solo necesita verificarse durante la instalación del equipo o cuando se realizan cambios en el cableado del sistema.
5.2.1.2 Capacidad máxima del circuito de ensayo. La capacitancia del circuito de ensayo, sin incluir la fuente de alimentación, debe ser inferior a 1.5 nanofaradios (nF). La capacitancia del circuito de ensayo se determinará midiendo la capacitancia a través de los cables destinados a conectarse a los terminales de la fuente de alimentación en AC mientras se monta una carga puramente resistiva (por ejemplo, una lámpara incandescente montada en el portalámparas).

Nota 1: La capacitancia del circuito de ensayo solo debe verificarse durante la instalación del equipo o cuando se realizan cambios en el cableado del sistema.

Nota 2: Se ha demostrado que ciertos productos SSL crean un componente de corriente de alta frecuencia (que puede ser> 30 kHz) cuando funcionan con fuentes de alimentación en AC que dependen de un sintetizador de onda digital para crear la forma de onda en AC. Los circuitos de ensayo pueden ser sensibles a la corriente de alta frecuencia debido a la capacitancia en el sistema, que puede ser el resultado de cables en paralelo que no están separados por una distancia apreciable. Una discusión de este tema se presenta en el Anexo B.
5.2.2 Ensayo de circuito de referencia. No se requiere ningún circuito de referencia para probar productos SSL. Un pequeño número de productos SSL es significativamente sensible a la potencia del sistema de medición y la impedancia dinámica de la fuente de alimentación en AC. Los errores asociados con dicha sensibilidad podrían mejorarse utilizando un circuito de referencia para unir las fuentes de alimentación de AC del laboratorio con las características típicas de pared AC. En la actualidad, no se ha desarrollado dicho circuito de referencia. Una discusión de este tema se presenta en el Anexo C.

5.3 Calibración de instrumento de medición eléctrica

Todos los equipos de medición eléctrica deben estar calibrados y ser trazables al Sistema Internacional de Unidades (SI).
5.3.1 Impedancia interna del circuito de tensión. Para evitar errores debido a las corrientes de fuga, la impedancia interna de los circuitos de medición de tensión (que incluye el medidor de potencia) debe ser de al menos $1 \mathrm{M} \Omega$ medido desconectando la fuente de alimentación y midiendo la resistencia en el portalámparas de prueba.
5.3.2 Precisión del medidor de corriente alterna. Los medidores de potencia en AC deben funcionar con todos los filtros de línea apagados y todos los filtros de frecuencia apagados.

Para la medición de la tensión de AC RMS, el medidor debe tener una incertidumbre expandida (k $=2$) de 0.4% o menos para la medición de una forma de onda sinusoidal de 60 Hz .

Nota: La mayoría de los medidores de potencia en AC en el mercado proporcionan especificaciones en términos de precisión. En el Anexo D se presenta una discusión sobre la relación entre precisión e incertidumbre de medición.

Para la medición de corriente AC RMS, el medidor debe tener una incertidumbre expandida ($k=2$) de 0.6% o menos para frecuencias de medición que varían de 0.5 Hz a 1 kHz , y una incertidumbre expandida ($k=2$) de 2.0% o menos para frecuencias de medición que varían de 1 kHz a 100 kHz .

Nota: En el Anexo B se presenta una discusión sobre la justificación para el uso de un medidor de potencia en AC capaz de medir frecuencias mayores de 100 kHz .

Para la medición de la potencia de AC activa, el medidor tendrá una incertidumbre expandida ($k=$ 2) de 1.0% o menos para frecuencias de medición que varían de 0.5 Hz a 1 kHz , y una incertidumbre expandida $(k=2)$ de 2.0% o menos para frecuencias de medición que van desde I kHz a 100 kHz.
5.3.3 Rango de frecuencia del analizador de corriente alterna. El analizador de potencia en AC debe tener un rango de frecuencia de DC a al menos 100 kHz para cubrir el contenido armónico de la corriente eléctrica.

Nota: Debido a las interacciones de la fuente de alimentación (como se analiza en el Anexo B), algunos productos SSL generan componentes de alta frecuencia por encima del ancho de banda del analizador de alimentación en AC. Para estos productos, se recomienda un analizador de alimentación de AC con un rango de frecuencia de ancho de banda de $\mathrm{DC}(\mathrm{OHz})$ a al menos 1 MHz .
5.3.4 Mediciones de distorsión armónica total. La distorsión armónica total (THD) se calculará como la suma RMS de los componentes armónicos (órdenes de magnitud de 2 a 50 para un medidor de 100 kHz , y órdenes de magnitud de 2 a 100 para un medidor de 1-MHz, como mínimo) dividido por la frecuencia fundamental durante el funcionamiento del DUT.
5.3.5 Medición de tensión de DC. La medición de tensión de DC debe tener una incertidumbre expandida ($\mathrm{k}=2$) de 0.1% o menos.
5.3.6 Medición de corriente DC. La corriente continua tiene una incertidumbre expandida ($\mathrm{k}=2$) de 0.1\% o menos.

5.4 Configuraciones eléctricas

El DUT operará a la tensión nominal AC RMS. o corriente DC nominal según la especificación del producto SSL para su uso normal. La medición del valor establecido estará dentro de un intervalo de tolerancia de +/- 0.5% para tensión AC RMS, de 0.2% para tensión DC y $+/-0.2 \%$ para corriente continua.

Nota: En el mercado de los Estados Unidos, las lámparas LED integradas con múltiples tensiones nominales, incluidos 120 V , deben funcionar a 120 V . Si una lámpara LED integrada con múltiples tensiones nominales no tiene una capacidad nominal de 120 V , la lámpara debe funcionar con la tensión de entrada nominal más alta. Las tensiones de operación típicas varían para otros mercados.

Algunos productos SSL sufren grandes corrientes de entrada cuando la alimentación en AC se aplica en una fase de 90°. La fuente de alimentación en AC debe configurarse para comenzar a aplicar corriente cuando está en fase cero. Si la fuente de alimentación de AC no es capaz de garantizar un arranque de fase cero, el voltaje en AC debe incrementarse a partir de OV. La tensión en AC puede incrementarse en unos pocos segundos.

Nota: Ciertos productos SSL con alimentación en AC no se encenderán si se incrementan desde OV y se tienen que encender con una tensión distinta de cero tensiones aplicadas. Esta tensión puede variar de un producto a otro. Esto puede ser especialmente cierto para los productos que intentan operar los LED a una potencia constante y pueden tratar de extraer una corriente excesiva a bajas tensiones de entrada. Si el DUT no se enciende al intentar subir de OV, el DUT se iniciará aplicando tensión de entrada nominal.

Algunos productos SSL alimentados por DC requieren corriente de entrada para comenzar la operación, que es mucho mayor que la corriente nominal; por lo tanto, para algunos productos, el límite de corriente debe establecerse mucho más alto que la corriente nominal.

La potencia eléctrica pulsada de entrada y mediciones sincronizadas con una potencia de entrada de ciclo de trabajo reducida que está destinada a reducir las temperaturas de la unión p-n por debajo de las alcanzadas con alimentación de potencia eléctrica continua no será utilizada para ensayos de productos SSL.

Si el DUT tiene capacidad de atenuación, las mediciones se realizarán en la condición de potencia de entrada atenuada máxima como una condición estándar. El producto tiene múltiples modos de operación. incluyendo temperatura de color correlacionada variable (CCT). La medición puede realizarse a niveles de potencia para los diferentes modos de operación (y CCT). Tales condiciones de configuración deben ser claramente reportadas.

Para dispositivos en AC o DC de baja tensión, la tensión puede estar limitada por la resolución de la fuente de alimentación. En este caso, las mediciones pueden tomarse con una combinación de una tensión mayor que el valor establecido y una tensión menor que el valor establecido. Los datos de medición requeridos se determinan interpolando los resultados de estas dos mediciones. Para las fuentes de alimentación de AC típicas que tienen una resolución de 0.1 V , se debe utilizar la interpolación lineal para todas las mediciones de datos en un intervalo de 0.1 V cuando no se puede cumplir el intervalo de tolerancia de la tensión de AC RMS.

6.0 Preparación de Ensayos

6.1 Identificación del DUT

Siempre es una buena práctica de laboratorio marcar o identificar claramente los DUT.

6.2 Manejo de DUT

Si bien los productos SSL no son tan sensibles al movimiento como las lámparas incandescentes, se deben minimizar las vibraciones y los choques mecánicos. Los dispositivos a probar no deben almacenarse bajo temperaturas extremas o en condiciones de alta humedad.

6.3 Adaptamiento *

Los productos SSL se probarán sin adaptamientos.
Nota: Se sabe que muchas, pero no todas, las fuentes LED aumentan ligeramente su salida de luz durante las primeras 1,000 horas de operación. Si el producto SSL está destinado a ser un estándar de verificación o un dispositivo para la comparación entre laboratorios, el producto SSL debe funcionar durante al menos 1,000 horas antes de ponerse en servicio.

6.4 Pre-funcionamiento y Estabilización

Se toman medidas previas al funcionamiento y a la estabilización. el DUT deberá ser operado el tiempo suficiente para alcanzar la estabilización fotométrica y eléctrica y el equilibrio de temperatura. El tiempo requerido para la estabilización depende del tipo de producto SSL. el tiempo de estabilización generalmente varía desde minutos para pequeñas lámparas LED integradas hasta dos o más horas para grandes luminarias SSL. Durante la estabilización. El producto SSL debe funcionar a temperatura ambiente como se especifica en la Sección 4.2.1. y en la orientación de operación como se especifica en la Sección 6.5 La estabilidad se logrará cuando la variación (máximo a mínimo) de al menos tres lecturas de la salida ajustada y el consumo de energía eléctrica, tomadas en un máximo de intervalos de 10 minutos durante un período de 20 minutos y dividido por la última de estas medidas cronológicamente, es inferior al 0,5\%. Las lecturas deben tomarse a intervalos regulares.

Para mediciones posteriores del mismo producto SSL (que ha alcanzado la estabilización inicial) en un ajuste de control de color o intensidad diferente, un método alternativo para determinar la estabilidad es el punto en el que se proyecta la variación en la salida del flujo luminoso y la potencia eléctrica a través de la regresión lineal. menos del 0,5\% en 20 minutos; la regresión lineal se basará en al menos tres mediciones tomadas con al menos un minuto de diferencia. Se registrará el tiempo de estabilización utilizado para cada medición.

Los productos SSL pueden funcionar previamente durante varias horas para disminuir el tiempo de estabilización requerido y la magnitud del cambio en la salida de luz y el consumo de energía durante el período de estabilización. Para el caso en que el uso previsto requiera solo una vida útil limitada (del orden de 1,000 horas o menos), los DUT no deben pre-quemarse previamente antes de realizar las mediciones.

6.5 Posición de funcionamiento y orientación

EI DUT se probará en la posición de funcionamiento con respecto a la gravedad recomendada por el fabricante para un uso previsto del producto SSL. La estabilización y las mediciones fotométricas y ópticas del DUT se realizarán en la misma posición de funcionamiento. Se informará la posición y orientación con respecto a un sistema goniométrico del DUT montado para la medición.

Nota: Si bien la emisión de luz de un LED en sí no se ve afectada por su posición, la posición de un producto SSL puede causar cambios en las condiciones térmicas de los LEDs utilizados en el producto y, por lo tanto, la salida de luz puede verse afectada por el producto SSL posición.

6.6 Formas de onda ópticas y eléctricas

Las formas de onda ópticas y eléctricas dependientes del tiempo de los productos SSL son variadas y, a menudo, no están documentadas. El laboratorio debe analizar las formas de onda ópticas y eléctricas para garantizar que el equipo de medición utilizado sea el adecuado. En el Anexo E se proporciona una discusión sobre los beneficios de la medición de forma de onda óptica y eléctrica.

[^2]
7.0 Mediciones del Flujo Luminoso Total y Ópticas Integradas

7.1 Generalidades

Las mediciones del flujo luminoso total (lumen) y/o ópticas integradas (incluida la cromaticidad y el flujo radiante y fotónico) del DUT se realizarán con un sistema de esfera integradora o un sistema de goniofotómetro (gonioespectroradiómetro). El método puede elegirse dependiendo de qué otros parámetros (por ejemplo, distribución de intensidad) deben medirse, el tamaño de los productos SSL y otros requisitos. La orientación y los requisitos sobre el uso de cada método se proporcionan a continuación.

7.2 Sistemas de esferas integradoras

7.2.1 Generalidades. Los sistemas de esfera integradoras son adecuados para el flujo luminoso total y las mediciones ópticas integradas de lámparas SSL integradas y luminarias SSL de tamaño relativamente pequeño. Un sistema de esfera integradora tiene la ventaja de permitir que las mediciones se realicen rápidamente y no requiere un cuarto oscuro. El movimiento del aire se minimiza, lo que resulta en fluctuaciones mínimas de temperatura en el DUT. Cabe señalar que el calor de un DUT montado en o sobre la esfera integradora puede aumentar la temperatura ambiente dentro de la esfera.

Se pueden utilizar dos tipos de detectores de esfera integradoras para realizar mediciones: $\mathrm{V}(\lambda)$ cabezal corregido de fotómetro (esfera-fotómetro) y espectroradiómetro (esferaespectroradiómetro). $\mathrm{El} \mathrm{V}(\lambda)$ fotómetro corregido sufre errores de desajuste espectral debido a la desviación de la capacidad de respuesta espectral del fotómetro de $V(\lambda)$, agravado por las variaciones en el rendimiento espectral de la esfera. Un espectroradiómetro calibrado con un estándar de flujo radiante espectral total no tiene errores de desajuste espectral.

El método del espectrorradiómetro se prefiere para la medición de productos SSL porque al medir cantidades fotométricas, los errores de desajuste espectral con el cabezal del fotómetro tienden a ser significativos para las emisiones SSL, y la corrección no es trivial. requiere conocimiento del sistema de respuesta espectral, así como el espectro del DUT. Además, utilizando el método del espectroradiómetro, las cantidades de color, el flujo radiante y el flujo de fotones se pueden medir al mismo tiempo que el flujo luminoso total.

El método del espectroradiómetro tiene desventajas, como la luz parásita espectral y los problemas de estabilidad a largo plazo (consulte IES LM-78-17 para obtener recomendaciones generales y requisitos sobre cómo realizar mediciones con esferas integradoras).
7.2.2 Características del fotómetro y espectroradiómetro. Una esfera integradora con detección de fotómetro (sistema de fotómetro de esfera) se calibrará con respecto a los estándares de flujo luminoso total ($4 \pi \circ 2 \pi$) trazables al SI a través de un instituto nacional de metrología (NMI)*. La f,' [una medida de la desviación de la función $V(\lambda)$) de la capacidad de respuesta espectral relativa total de la esfera y el fotómetro combinados será del 3% o menos ${ }^{6}$. Si se aplica un factor de corrección de desajuste espectral, f,' de la capacidad de respuesta espectral relativa total de la esfera y el fotómetro puede ser más grande La corrección de discrepancia espectral se aplicará a
los productos SSL que emiten una distribución de potencia espectral de banda estrecha (por ejemplo, fuentes monocromáticas).

> * La función de un instituto nacional de metrología (NMI) en el sistema de medición de un país es realizar metrología científica. realizar unidades base y mantener estándares nacionales primarios. (Metrología. Wikipedia: http://en.wikipedia.org/wlki/Metrology; consultado en 2018
> 6 de enero).

Una esfera integradora con detección de espectroradiómetro (sistema de espectroradiómetro de esfera) se calibrará con respecto a los estándares de flujo radiante espectral total ($4 \pi \circ 2 \pi$) rastreable al SI a través de un instituto nacional de metrología. El sistema de espectroradiómetro cubrirá el rango de longitud de onda de al menos 380 nm a 780 nm para mediciones fotométricas. Para el flujo radiante y el flujo de fotones, puede ser necesario un rango de longitud de onda mayor dependiendo de la aplicación. El sistema de espectroradiómetro debe tener en cuenta la luz fuera del rango de longitud de onda que puede dar lugar a luz parásita dentro del sistema de espectroradiómetro.

El sistema de espectroradiómetro tendrá una incertidumbre de longitud de onda dentro de 0.5 nm ($k=2$), y el ancho de banda (ancho completo a la mitad máximo, FWHM) y el intervalo de exploración (para sistemas de exploración) no deberán ser mayores de 5 nm .

La respuesta cosenoidal del fotómetro o del espectroradiómetro tendrá un índice de respuesta direccional, f_{2}, inferior al 15\% (consulte LM-78-17).
7.2.3 Autoabsorción y tamaño de la esfera. Cuando se utiliza una esfera integradora, se aplicará una corrección de autoabsorción con una lámpara auxiliar. Para minimizar la incertidumbre de corrección de autoabsorción para los DUT montados en el centro de la esfera, el área de superficie total del DUT no debe ser más del 2% del área de superficie total de la esfera integradora y para los DUT montados en la geometría 2π, el área total de superficie del DUT interno a la esfera no debe ser más del 1% del área de superficie total de la esfera integradora.

Nota: La corrección de autoabsorción se ve afectada por el tamaño del producto SSL, el color y la irregularidad de la forma. Se debe tener precaución al probar productos más grandes, productos más oscuros y productos de forma irregular (productos para los que se requieren múltiples reflejos para que la luz golpee la superficie para salir de la superficie). La validación de la capacidad de probar un producto se puede determinar mediante la prueba usando una esfera y un goniómetro y comparando los resultados.

7.3 Sistemas de integración angular

73.1 Generalidades. Los goniofotómetros pueden medir el flujo luminoso total y/o cantidades ópticas integradas de productos SSL. Pueden ser especialmente útiles en la medición de productos SSL de tamaño relativamente grande, de color oscuro o de forma irregular para los que las esferas integradoras no son apropiadas. Se instala un goniofotómetro en una habitación oscura, que normalmente tiene temperatura controlada y no está sujeta a la acumulación de calor desde en DUT. Se debe tener cuidado para evitar corrientes de aire que puedan afectar las mediciones de los DUTs sensibles a la temperatura (consultar la Sección 4.3). El tipo de goniofotómetro deberá
ser capaz de mantener la posición de operación prevista sin cambios con respecto a la gravedad; por lo tanto, solo se permitirán goniofotómetros Tipo C. El requisito de distancia no es crítico si solo se van a medir cantidades integradas. (Consultar la Sección 8.3 y el IES LM-75-01 / R12 para obtener recomendaciones generales y requisitos para realizar mediciones con goniófotómetros).
7.3.2 Características del fotómetro y espectroradiómetro. El sistema de goniofotómetro se calibrará con respecto a los estándares trazables al SI a través de un instituto nacional de metrología (NMI). El fotómetro o espectroradiómetro debe tener una respuesta angular del coseno, $\mathrm{f}_{2}(\varepsilon, \emptyset)$ inferior al 2% dentro de su campo de visión para el DUT ${ }^{6}$.

Un sistema de goniómetro que use un fotómetro tendrá un $\mathrm{f}_{1}{ }^{\prime}$ de 3% o menos. Si se aplica un factor de corrección de desajuste espectral, el f_{1} ' del fotómetro puede ser mayor. La corrección del desajuste espectral puede ser más difícil si hay una variación significativa en el color con el ángulo. Para los productos SSL que emiten una distribución de potencia espectral de banda estrecha (por ejemplo, fuentes monocromáticas), se evaluará el impacto del error de desajuste espectral y se aplicará la corrección de desajuste espectral si es necesario.

Deben considerarse los efectos del desajuste espectral de un sistema de goniómetro que utiliza un colorímetro de triestímulo para medir las coordenadas de cromaticidad.

Un sistema de goniómetro que utiliza detección por espectroradiómetro cubrirá el rango de longitud de onda de al menos 380 nm a 780 nm para mediciones fotométricas. Para medir el flujo radiante y el flujo de fotones, puede ser deseable un rango de longitud de onda mayor. El sistema de espectroradiómetro debe tener en cuenta la luz fuera de este rango de longitud de onda que puede dar lugar a luz parásita dentro del sistema de espectroradiómetro, especialmente durante la calibración. El sistema de espectroradiómetro tendrá una incertidumbre de longitud de onda dentro de $0.5 \mathrm{~nm}(\mathrm{k}=2)$, y el ancho de banda (FWHM) no será mayor de 5 nm .
7.3.3 Resolución de escaneo angular. La resolución de escaneo angular debe ser lo suficientemente fina como para caracterizar con precisión el DUT. Para distribuciones típicas de gran angular y de intensidad lisa, una rejilla lateral de $22,5^{\circ}$ (horizontal) y $2,5^{\circ}$ longitudinal (vertical) es generalmente suficiente. Se utilizará una resolución de ángulo más fina (incrementos de prueba más pequeños) para los casos en que la intensidad luminosa del DUT esté cambiando rápidamente en función del ángulo, como en las fuentes de formación de haces. (Consulte los documentos específicos de la aplicación para obtener más orientación sobre cómo seleccionar la resolución de escaneo correcta, en función de la experiencia adquirida durante años probando otras tecnologías de iluminación). Como ejemplo, el IES LM-20, Método aprobado por la IES Fotometría de Lámparas de Tipo Reflector, proporciona una resolución angular recomendada basada en el ángulo del haz de la lámpara, como se muestra en la Tabla 7-1 ${ }^{7}$.

Tabla 7-1. Resolución angular para haces de lámparas

Para lámparas con haces menores a 20	
\% de intensidad luminosa máxima	Resolución angular en grados
100\% a 50\%	1
Menor a (de 50\% a 10\%)	2
Menor a 10\%	5

ANSI/IES LM-79-19
Método aprobado: Mediciones Fotométricas y Eléctricas de Productos de Iluminación de Estado Sólido (SSL)

Para lámparas con haces mayores o iguales a $\mathbf{2 0}^{\circ}$	
\% de intensidad luminosa máxima	Resolución angular en grados
100\% a 50\%	2
Menor a 50%	5

7.3.4 Rango angular. El rango del escaneo angular debe cubrir todo el ángulo sólido al que el DUT emite luz a menos que las regulaciones o los requisitos obligatorios de los métodos de prueba de aplicación requieran mediciones adicionales. Los goniofotómetros tienen inherentemente una región angular para la cual el hardware de montaje bloquea la luz del producto SSL. Para productos SSL isotrópicos, este ángulo sólido "muerto" debe minimizarse o aplicarse los procedimientos de corrección apropiados. (Consulte IES LM-7S-01 / R12.)

Se pueden requerir dos mediciones para algunos DUT. El primero es un barrido normal completo del rango angular. El segundo se toma con el DUT montado en el goniómetro en la posición de funcionamiento adecuado para el DUT, con el brazo del goniómetro girado 180°. Luego se combinan los dos conjuntos de datos.

8.0 Intensidad Luminosa o Medición Fotométrica de Distribución Angular

8.1 Generalidades

El tipo de gonlofotómetro deberá ser capaz de mantener la posición de operación prevista sin cambios con respecto a la gravedad; por lo tanto, solo se permitirán gonlofotómetros Tipo C (consultar IES LM-75-01 / R12).

Se debe tener cuidado para evitar que la luz reflejada desde la estructura mecánica del goniofotómetro o cualquier otra superficie, incluidas las reflexiones secundarias de las superficies del DUT, lleguen al fotodetector. La velocidad de rotación del equipo de posicionamiento deberá ser tal que minimice la perturbación del equilibrio térmico del DUT (consulte la Sección 4.3).

El sistema de goniófotómetros se calibrará con estándares trazables al Sistema Internacional de Unidades (SI) a través de un instituto nacional de metrología (NMI). Las distribuciones de intensidad luminosa serán medidas absolutas reportadas en unidades de candelas (cd).

8.2 Características del fotómetro y espectroradiómetro

El fotómetro o espectroradiómetro tendrá una respuesta angular coseno $f_{2}(\varepsilon, \varphi)$ menos del 2% dentro de su campo de visión para el DUT.

Un sistema de goniómetro que utilice un fotómetro tendrá una f_{1} ' del 3% o menos. Si se aplica un factor de corrección de desajuste espectral, el fotómetro puede ser mayor. Para los productos SSL que emiten una distribución de potencia espectral de banda estrecha (por ejemplo, fuentes monocromáticas), se evaluará el impacto del error de desajuste espectral y se aplicará la corrección de desajuste espectral si es necesario. La corrección del desajuste espectral puede ser más difícil si hay una variación significativa en el color con el ángulo.

Un sistema de goniómetro que utiliza una detección de espectroradiómetro cubrirá el rango de longitud de onda de al menos 380 nm a 780 nm para mediciones fotométricas. Para medir el flujo radiante y el flujo de fotones, puede ser necesario un rango de longitud de onda mayor, dependiendo de la aplicación. El sistema de espectroradiómetro debe tener en cuenta la luz fuera de este rango de longitud de onda que puede dar lugar a luz parásita dentro del sistema de espectroradiómetro. El sistema de espectroradiómetro tendrá una incertidumbre de longitud de onda dentro de $0.5 \mathrm{~nm}(\mathrm{k}=2)$, y el ancho de banda (FWHM) no será mayor de 5 nm .

8.3 Distancia de prueba

La distancia de prueba debe ser lo suficientemente grande como para que el DUT se mida en una condición de campo lejano (para lo cual se aplica la ley inversa al cuadrado). La distancia será mayor que cinco veces la dimensión luminosa más larga del DUT SSL. Cabe señalar que este requisito es suficiente para productos SSL con una distribución angular que es casi Lambertiana. Se pueden requerir distancias de ensayo más grandes para los productos SSL que forman haces. Este requisito minimiza los errores incurridos debido a los diferentes ángulos de medición de la luz desde el borde de la fuente en comparación con la luz desde el centro de la fuente. Dado que el esquema óptico utilizado para producir productos SSL formadores de haces puede ser complejo, se recomienda que la distancia de medición mínima requerida se determine midiendo
experimentalmente la variación de intensidad con la distancia para encontrar la distancia mínima a la que se aplica la ley del cuadrado inverso. Se debe reportar la distancia de prueba.

Nota: La medición de lámparas y luminarias con ángulos de campo estrechos es un desafío utilizando sistemas integrales de esfera y goniofotómetro. Los sistemas de esfera integradas pueden poseer una respuesta angular no uniforme (que depende significativamente de la reflectancia del revestimiento de la esfera). Para los sistemas de goniofotómetro, la distancia entre la fuente de luz y el fotodetector debe ser lo suficientemente grande como para que se aplique la ley del cuadrado inverso.

8.4 Alineación del goniómetro

El centro fotométrico del DUT se alineará con la intersección de los ejes del goniómetro. Deberá reportarse una descripción de la ubicación del centro fotométrico del DUT y una descripción de la orientación del DUT con respecto a los ejes del goniómetro. El goniómetro debe tener una resolución angular suficiente y una alineación absoluta para caracterizar el DUT. La resolución angular requerida y la alineación absoluta del sistema de goniómetro dependen de la pendiente de la distribución de intensidad luminosa del DUT con respecto al ángulo. (Consultar los documentos específicos de la aplicación para obtener más orientación sobre cómo seleccionar la alineación correcta de DUTS.) Por ejemplo, IES LM-46-04 / R14), Método aprobado por IESNA para Ensayos Fotométricos de Luminarias de interior utilizando Descarga de Alta Intensidad o Filamento de Lámparas Incandescentes, proporciona información sobre cómo alinear correctamente las luminarias interiores ${ }^{8}$.

El eje del goniofotómetro (el eje de rotación del portalámparas) y la posición del detector deben alinearse con precisión. Esto debe verificarse periódicamente, ya que el eje del goniofotómetro puede desplazarse con el tiempo si el ángulo del espejo se desvía. Incluso un pequeño ángulo de desviación del espejo puede causar grandes errores en la medición de lámparas de haz estrecho.

9.0 Mediciones de Uniformidad de Cromaticidad

9.1 Generalidades

Los productos SSL pueden tener una variación de cromaticidad con el ángulo de emisión. La versión anterior de este documento (IES LM-79-08) proporcionó un método de medición para la cromaticidad integrada y la no uniformidad espacial de la cromaticidad cuando no estaba disponible un goniospectroradiometro o un goniocolorimetro. No se utilizará el método presentado en IES LM-79-08.

9.2 Resolución angular

La resolución angular será lo suficientemente fina como para caracterizar con precisión el DUT. Para distribuciones típicas de gran angular y de intensidad suave, una rejilla lateral (horizontal) y longitudinal (vertical) a 90° es generalmente suficiente. Se utilizará una resolución de ángulo más fina (incrementos de prueba más pequeños) para los casos en que la cromaticidad del DUT está cambiando rápidamente en función del ángulo, como en las fuentes de formación de haces (consultar la Sección 7.3.3).

9.3 Rango angular

El rango del escaneo angular debe cubrir todo el ángulo sólido al que el DUT emite luz a menos que las regulaciones o los requisitos obligatorios de los métodos de ensayo de aplicación requieran mediciones adicionales. Los datos en regiones angulares para las cuales la intensidad luminosa es menor que la intensidad pico no se incluirán en el cálculo de la uniformidad angular del color. Los goniofotómetros tienen inherentemente una región angular para la cual el hardware de montaje bloquea la luz del producto SSL. Para productos isotrópicos SSL. este ángulo sólido "muerto" debe minimizarse o deben usarse los procedimientos de corrección apropiados (consulte IES LM- / 5-01 / R12).

Para ciertos DUTs, se pueden requerir dos mediciones. La primera es un barrido normal completo del rango angular. La segunda es cuando el DUT está montado en el goniómetro en la posición de funcionamiento adecuada para el DUT, pero el brazo del goniómetro gira 180°. Los dos conjuntos de datos se combinan.

9.4 Uniformidad angular del color

La uniformidad angular del color $\Delta u^{\prime}, v^{\prime}$. es la mayor desviación de cromaticidad (u^{\prime}, v^{\prime}) de un producto SSL (emitido en diferentes direcciones). a partir de su cromaticidad promediada angularmente ($\mathrm{u}_{\mathrm{a}}{ }^{\prime}, \mathrm{v}_{\mathrm{a}}{ }^{\prime}$), donde la desviación se calcula como:

$$
\Delta u^{\prime}, v^{\prime}=\left[\left(u^{\prime}-u_{a}^{\prime}\right)^{2}+\left(v^{\prime}-v_{a}^{\prime}\right)^{2}\right]^{1 / 2}
$$

Las coordenadas de cromaticidad (u^{\prime}, v^{\prime}) se miden con un goniocolorimetro o gonioespectroradiometro. La cromaticidad promediada angularmente se calculará a partir de datos goniométricos medidos en el rango angular de interés como una media ponderada de todos los puntos medidos (ponderados por la intensidad luminosa y el factor de ángulo sólido en cada punto). (Consultar IES LM-7S-01 / R12 para obtener información sobre la metodología para
integrar datos goniométricos). La desviación más grande de la cromaticidad sobre la región angular de interés se informará como la uniformidad angular del color.

9.5 Límite de señal y verificación

Los laboratorios deben establecer un límite de capacidad de intensidad luminosa para la medición de la uniformidad de la cromaticidad. El laboratorio debe acondicionar una lámpara incandescente con un alto contenido de recubrimiento opal o de pavonado de una potencia adecuada para determinar el nivel de intensidad luminosa más bajo. Puede ser necesario el uso de varias lámparas de diferentes potencias para las cuales la intensidad luminosa está por encima y por debajo del límite a determinar. Otros métodos para determinar el límite de intensidad luminosa son: reducción del tiempo de integración si un espectroradiómetro es el dispositivo de detección; y reducción de la ganancia si un colorímetro es el dispositivo de detección. El límite de intensidad luminosa se determina para un tiempo de integración reducido o ganancia reducida, y luego se divide por el aumento disponible en el tiempo de integración o ganancia para llegar al límite de intensidad luminosa final.

La lámpara con recubrimiento opal o muy pavonada se debe montar con la base hacia arriba y funcionar con corriente constante. El soporte del filamento de la lámpara no debe estar alineado con el semiplano 0° o 90°. Se recogerán cuatro semiplanos de datos (lateral u horizontal) ($0^{\circ}, 90^{\circ}$, 180° y 270°), y cada 10° de 0° a 150° longitudinal (vertical). Se determinará para cada plano lateral para el que las cuatro mediciones estén referenciadas a la media $\Delta u^{\prime}, v^{\prime}$ para el plano lateral. Los valores para los planos laterales se promedian para crear un $\Delta u^{\prime} v^{\prime}$. general. El límite inferior de intensidad luminosa se determina como la condición para la cual el total es 0.0015 o mayor. El Anexo F proporciona un ejemplo de esta verificación.

10.0 Incertidumbre de Medición

El desarrollo de un presupuesto de incertidumbre de medición es una herramienta útil para analizar un sistema de medición, especialmente como un método para descubrir problemas y justificar mejoras. Al observar los componentes individuales de la incertidumbre, un laboratorio puede tomar decisiones de inversión en mejoras del sistema que disminuyan la incertidumbre de medición o la dispersión en las mediciones. El IES está desarrollando Memorandos Técnicos para guiar a los laboratorios en el desarrollo de presupuestos de incertidumbre de medición al proporcionar el conocimiento y ejemplos de implementación.

Como los intervalos de tolerancia que se han proporcionado a lo largo de esta Norma se tiene la intención de limitar la magnitud de la incertidumbre de medición, no se requiere el cálculo directo de la incertidumbre de medición para una medición de producto SSL. Si se cumplen las pautas proporcionadas, la incertidumbre de medición expandida esperada para la medición del flujo luminoso total es del orden de $\pm 4 \%(k=2)$. Esto es coherente con los resultados resumidos de una prueba de aptitud realizada por 118 laboratorios de todo el mundo ${ }^{9}$ Debe tenerse en cuenta que la mayor fuente de desviación en el ensayo de aptitud fue la aplicación incorrecta del portalámparas de 4 polos (consultar la Sección 5.2.1).

11.0 Requisitos para la elaboración de los Reportes

11.1 Contenido típico del informe

El reporte de ensayo debe enumerar todos los datos de identificación para cada DUT junto con los datos de rendimiento. El informe también debe enumerar todos los datos pertinentes sobre las condiciones de ensayo, el tipo de equipo de ensayo, los productos SSL y los estándares de referencia. Los datos se notificarán con un número apropiado de dígitos significativos.

Las métricas de reportes enumeradas a continuación son típicas. Los datos requeridos a menudo se determinan en colaboración con el cliente.

- Fecha del ensayo y organización que realiza el ensayo
- Nombre del fabricante; designación del DUT
- Parámetros ópticos medidos (p. Ej., Flujo luminoso total, flujo radiante, flujo de fotones)
- Valores eléctricos medidos (aclarar si es en AC, incluida frecuencia o DC)
- Cantidades calculadas (p. Ej., Eficacia luminosa, uniformidad angular del color)
- Temperatura ambiente durante las mediciones, junto con la temperatura de monitoreo del motor ligero, si se midió Instrumentación utilizada (goniómetro o esfera) y las condiciones de medición fotométrica
- Para medición de esfera: diámetro de esfera, reflectancia de recubrimiento, geometría $4 \pi \circ 2 \pi$
- Medición del goniofotómetro: distancia fotométrica
- Fuente de trazabilidad SI
- Factores de corrección aplicados (p. Ej., Desajuste espectral, autoabsorción)
- Intensidad luminosa, intensidad radiante y distribución de intensidad de fotones (si corresponde)
- Parámetros de color: coordenadas de cromaticidad, CCT, ANSI / cantidades ${ }^{10}$ IES TM-30-18, $\left(\mathrm{R}_{\mathrm{f}}\right.$, R_{g}, Cambio Croma local, Matiz local de cambio) y CRI para productos con luz blanca
- Distribución de potencia espectral (si corresponde)
- Declaración de incertidumbres (si es necesario)

11.2 Condiciones u operaciones no estándar

Procedimientos

Para las mediciones que se realizan en condiciones que no son estándar según los requisitos de este documento, el laboratorio debe identificar condiciones no estándar en un lugar destacado en el informe de ensayo.

Anexo A - Consideraciones de Flujo de Aire para Ensayo de Productos SSL

El flujo de aire que pasa sobre un producto SSL puede cambiar la temperatura de funcionamiento, lo que resulta en un cambio en el flujo luminoso sin un cambio proporcional en el consumo de energía eléctrica. Sin embargo, como se discute a continuación, este efecto potencial se considera lo suficientemente pequeño como para que no sea una preocupación.

Las Figuras A-1 y A-2 muestran el cambio en la salida de luz y la potencia eléctrica RMS para dos productos residenciales típicos diferentes. Los resultados muestran una dependencia significativa de la velocidad del aire.

Figura A-1. Cambio en la salida de luz y la potencia eléctrica RMS frente a la velocidad del flujo de aire para un producto residencial típico.

El flujo de aire a menudo gira, lo que requiere una técnica de medición omnidireccional. Para medir la velocidad del aire omnidireccional, generalmente se emplea un anemómetro térmico calibrado (a veces llamado anemómetro de alambre caliente) o un medidor de velocidad del aire térmico. Los anemómetros térmicos pueden medir desde $0 \mathrm{~m} / \mathrm{s}$ a $1 \mathrm{~m} / \mathrm{s}$ o más, y deben calibrarse para el medidor de unidades Sl y segundo. Cuando se utiliza el anemómetro térmico, el sensor
debe montarse en el centro fotométrico del goniofotómetro o esfera integradora. La velocidad del aire debe medirse durante 30 minutos a un intervalo de 2 minutos como máximo para capturar varios ciclos de trabajo de los controles de temperatura. Todas las mediciones dentro del período de medición de 30 minutos deben estar dentro de la tolerancia de aceptación. que depende de la incertidumbre del anemómetro térmico.

Este documento no requiere mediciones específicas para el flujo de aire. Las intercomparaciones de laboratorio actuales han demostrado que no existe una preocupación con el flujo de aire ambiental del laboratorio. Los datos del Programa de Aseguramiento de Medición administrado por el Instituto Nacional de Estándares y Tecnología (NIST)* del 2010 al 2014 muestran que la diferencia de flujo de aire entre los laboratorios que usaron esferas en comparación con los laboratorios que usaron goniómetros fue pequeña y estaba dentro de la incertidumbre de las mediciones. El gráfico que se muestra en la Figura A-3 utiliza un análisis de diagrama de probabilidad normal**. La desviación estándar para el flujo luminoso total para todas las lámparas medidas con sistemas de esfera es del 2%, lo que resulta en un intervalo de confianza del $95 \% \pm 4.0 \%$. La desviación estándar del flujo luminoso total para todas las lámparas medidas con sistemas de goniómetro es del 2.3%, lo que resulta en un intervalo de confianza del $95 \% \mathrm{de} \pm 4.6 \%$. El sesgo entre el NIST y el laboratorio promedio es de 0,53\% para las mediciones del sistema de esfera El sesgo entre el NIST y el laboratorio promedio es del 0.37% para las mediciones del sistema goniométrico. Uno esperaría que las mediciones del goniómetro muestren más variación o un sesgo mayor que el NIST. Si bien hay indicaciones sutiles, estas no son estadísticamente significativas, ya que el laboratorio de pruebas típico tiene una incertidumbre expandida de al menos $3 \%(k=2)$.

Figura A-3. Ajustes lineales a la gráfica de probabilidad normal para mediciones del sistema de esfera y mediciones del sistema de goniómetro del Programa NIST Measurement Assurance, Del 2010 al 2014.

En base a las consideraciones anteriores, los efectos debidos al flujo de aire no son actualmente una preocupación.

[^3]
Anexo B- Corriente de Alta frecuencia y Medición de Capacitancia del Circuito

Los laboratorios se han preocupado por la capacitancia del circuito de medición y la transmisión de corriente de alta frecuencia para ciertas tecnologías de iluminación, incluidos los productos SSL que están destinados a reemplazar los tubos fluorescentes y operar con el balastro electrónico. El balastro electrónico tiene una salida típica de 300 V RMS a alta frecuencia (20 kHz a 85 kHz). Si un laboratorio ejecuta, por ejemplo, 8 m (aproximadamente 25 pies) de cable paralelo de calibre 14 entre el balasto y la lámpara, el 17% de la corriente medida nunca llega a la lámpara porque la capacitancia entre los dos cables desvía la corriente de regreso a la fuente.

Se ha demostrado que ciertos productos SSL crean un componente de corriente de alta frecuencia (mayor de 30 kHz) cuando se usan con fuentes de alimentación de AC que dependen de un sintetizador de onda digital para crear la forma de onda de ACA. Los circuitos de ensayos pueden ser sensibles a la corriente de alta frecuencia debido a la capacitancia en el sistema, que puede ser el resultado de cables en paralelo que no están separados por una distancia apreciable. La Figura B-1 muestra las ondas de voltaje y corriente para una lámpara alimentada por dos tipos diferentes de fuentes de alimentación de AC y una toma de pared del laboratorio.

Debe tenerse en cuenta que las ondas de tensión son muy similares. Sin embargo, mientras que la onda de corriente asociada con la toma de pared no tiene un componente de alta frecuencia, la onda de corriente asociada con las dos fuentes de alimentación muestra componentes de alta frecuencia. El componente de alta frecuencia se correlaciona con la frecuencia del sintetizador de onda digital, y la magnitud se correlaciona con la velocidad de la respuesta de tensión de salida. La Tabla B-1 muestra la medida de la lámpara bajo ensayo usando las tres fuentes de energía descritas anteriormente y un sistema de esfera con 8 m (aproximadamente 25 pies) de cable paralelo de calibre 14 en las proximidades. La potencia perdida se debe a la capacitancia en el sistema de medición. La Tabla B-2 muestra las mismas medidas con los 8 m de cable con los conductores separados por más de 30 cm (aproximadamente 1 pie) de espacio de aire. Como se muestra, el error debido a la capacitancia se reduce significativamente.

Figura B-1. Ondas de tensión (verde, gris y verde azulado) y corriente (púrpura, rojo y dorado) para una lámpara de prueba alimentada por tres fuentes diferentes.

ANSI/IES LM-79-19
Método aprobado: Mediciones Fotométricas y Eléctricas de Productos de Iluminación de Estado Sólido (SSL)

Tabla B-1. Mediciones eléctricas para la lámpara de prueba mostrada en la Figura B-1							
con conductores en proximidad cercana							
	Tensión	Corriente	\% de diferencia de corriente con toma de pared	Potencia	\% de direrencia de potencia con toma de pared	Factor de potencia (PF)	\% de diferencia de PF con toma de pared
Pared	120.1	0.09504		10.373		0.9100	
PS1	120.0	0.09462	0.61%	10.337	0.80%	0.9081	0.0016
PS2	120.1	0.09444	0.42%	10.293	0.38%	0.9194	-0.0007

Tabla B-2. Mediciones eléctricas para la lámpara de prueba con los conductores separados por más de $\mathbf{3 0} \mathrm{cm}$ (aproximadamente 1 pie)

	Tensión	Corriente	\% de diferencia de corriente con toma de pared	Potencia	\% de direrencia de potencia con toma de pared	Factor de potencia (PF)	\% de diferencia de PF con toma de pared
Pared	120.0	0.09502		10.376		0.9097	
PS1	120.1	0.09508	-0.06%	10.366	0.10%	0.9080	0.0018
PS2	120.0	0.09510	-0.08%	10.391	-0.15%	0.9106	-0.0010

Anexo C - Resistencia de la Fuente de Alimentación y Dependencia de la Inductancia.

No se requiere ningún circuito de referencia para probar productos SSL. Casi todos los productos SSL tienen cierta sensibilidad a la impedancia del sistema de medición y la impedancia dinámica de la fuente de alimentación de AC, aunque para muchas lámparas, la sensibilidad es leve, como se muestra en la Figura C-1 para una lámpara en particular.

El primer gráfico en la Figura C-1 muestra la diferencia porcentual en el flujo luminoso del producto SSL usando dos (líneas punteadas y continuas) diferentes tipos de fuentes de alimentación (diferentes velocidades de respuesta de tensión de salida), con el producto SSL conectado a la fuente de alimentación de AC del laboratorio (pared). Los puntos coloreados muestran el efecto cuando se agregan inductores al circuito, y la abscisa muestra el efecto de agregar resistencias al circuito. El segundo gráfico en la Figura C-1 muestra el porcentaje de diferencia para la corriente RMS, y el tercer gráfico muestra el porcentaje de diferencia entre la potencia RMS.

Otras lámparas muestran sensibilidad a la resistencia y/o inductancia, como se muestra en la Figura C-2 y la Figura C-3. La lámpara en la Figura C-2 muestra un potencial de gran diferencia en la corriente RMS realizada entre diferentes laboratorios en función de la resistencia y la inductancia en los sistemas de medición. La lámpara en la Figura C-3 muestra un potencial de grandes diferencias en la corriente RMS y la medición del flujo luminoso realizada entre diferentes laboratorios.

La Figura C-4 muestra un producto SSL que es extremadamente sensible y representa una fracción muy pequeña de los productos en el mercado. El Comité de Procedimientos de Pruebas de IES no ha desarrollado una técnica estándar de medición de la fuente de alimentación de AC que permitiría a diferentes laboratorios realizar mediciones consistentes y que representaría el rendimiento del producto SSL en condiciones reales.

Figura C-3. Producto SSL (3) con sensibilidad a la resistencia e inductancia en corriente RMS y flujo luminoso.

Figura C-4. Producto SSL (4) con sensibilidad a la resistencia e inductancia en corriente RMS, flujo luminoso y energía eléctrica RMS

Anexo D - Intervalo de Tolerancia vs. Intervalo de Aceptación

En este documento, las condiciones requeridas se expresan en términos de un intervalo de tolerancia, con límites de tolerancia superior e inferior especificados. Para asegurar que cualquier parámetro dado esté dentro del intervalo de tolerancia especificado, la incertidumbre de medición aplicable se considerará derivando el intervalo de aceptación correspondiente. El intervalo de aceptación se define como el intervalo de tolerancia reducido por la incertidumbre expandida de la medición (con una confianza del 95\%) en ambos límites del intervalo de tolerancia. Esta relación se ilustra gráficamente en la Figura D-1. El valor medido de cualquier parámetro especificado debe estar dentro del intervalo de aceptación derivado del intervalo de tolerancia correspondiente y la incertidumbre de medición.

Como ejemplo, la especificación para un analizador de corriente alterna comúnmente disponible proporcionan la precisión de la medición de la tensión de AC para frecuencias que van desde 45 Hz a 66 Hz como:

$$
\text { Precisión }=0.1 \% \text { (Lectura) }+0.1 \% \text { (Rango) }
$$

Esta precisión es válida por tres meses. Para una precisión de calibración de 12 meses, la precisión de 3 meses se multiplica por 1,5. Esta precisión se revalida cuando un laboratorio de calibración realiza una calibración de un solo punto o la verificación de una configuración de rango en el analizador de corriente alterna.

Por lo tanto, para una lectura de $120 \mathrm{~V}, 60 \mathrm{~Hz}$ (Lectura $=120 \mathrm{~V}$) en un rango de 150 V (Rango = 150 V), la precisión es de $0,41 \mathrm{~V}$ durante 12 meses, lo que define el ancho medio de una distribución uniforme o rectangular. La conversión de la mitad del ancho de una distribución uniforme a la incertidumbre estándar se realiza dividiendo la mitad del ancho por la raíz cuadrada de tres. La incertidumbre estándar para este analizador de potencia de AC para la medición de tensión en AC es 0.23 V o 0.19%. Con un factor de cobertura de $\mathrm{k}=2$, la incertidumbre expandida o la incertidumbre de calibración es 0.46 V o 0.38%. Para medir 220 V , la incertidumbre expandida es 0.90 V o 0.41\%.

Figura D-1. Relación gráfica entre el intervalo de tolerancia, el intervalo de aceptación y la incertidumbre de medición para configurar 120 V AC .

Para configurar la tensión de AC en 120.00 V usando este analizador para el cual el intervalo de tolerancia es $\pm 0.5 \%$ (provisto en la Sección 5.3.2), la lectura de potencia en AC de un analizador debería estar entre 119.86 V y 120.14 V (que define el valor de aceptación). Se proporciona más información sobre el intervalo de aceptación del concepto en la ISO/IEC Guía 98-4* Otro ejemplo es la medición de la temperatura ambiente, que según la Sección 4.2 .1 se mantendrá en $25^{\circ} \mathrm{C}$ con un intervalo de tolerancia de $+/-1.2{ }^{\circ} \mathrm{C}$. si la incertidumbre expandida ($\mathrm{k}=2$) del termómetro es $0.2^{\circ} \mathrm{C}$. la lectura del termómetro será $\pm 1.0^{\circ} \mathrm{C}$ desde $25^{\circ} \mathrm{C}$. como se muestra en la Figura - D2.

Figura D-2. Relación gráfica entre el intervalo de tolerancia, el intervalo de aceptación y la incertidumbre de medición para Medición de temperatura ambiente.

[^4]
Anexo E-Beneficios de la Medición de Forma de Onda

La medición de la forma de onda óptica y eléctrica ofrece varios beneficios. Una es evitar la medición imprecisa de RMS, ya que no siempre es obvio cuando una onda oscilante se sale de escala. La Figura E-1 muestra un ejemplo de una onda fuera de escala que resulta en un 1.1% de diferencia en la medición RMS.

Figura E-1. Ejemplo de una señal de fotómetro fuera de escala

La medición de la forma de onda óptica también garantiza que los amplificadores y voltímetros del fotómetro funcionan correctamente. Por ejemplo, un voltímetro configurado para medir la tensión de DC que se usa para medir una tensión que tiene un componente de AC probablemente no medirá la señal correctamente.

Las señales de AC también se pueden evaluar, como se muestra en la Figura E-2. En este caso, la señal óptica tiene un cambio muy fuerte que resulta en un timbre en el amplificador porque no puede seguir el ritmo de la transición brusca.

Otro beneficio de medir formas de onda ópticas y eléctricas es la capacidad de determinar un tiempo de integración apropiado para dispositivos de captura de carga (por ejemplo, espectrómetros CCD*). Como se muestra en la Figura E-3, la señal óptica es esencialmente una onda cuadrada con una frecuencia de 120 Hz . El tiempo de integración usando una esfera pequeña

ANSI/IES LM-79-19

Método aprobado: Mediciones Fotométricas y Eléctricas de Productos de Iluminación de Estado Sólido (SSL)
con un recubrimiento de alta reflectancia y un espectrómetro sensible puede ser tan pequeño como 6 ms antes de que se carguen los carguen las fuentes CCD. Debido a que el tiempo de inicio de la recopilación de datos determina el ancho medido del pulso, es muy probable que se produzcan grandes errores de repetibilidad.

Las mediciones de RMS y promedio no se verán afectadas por los instrumentos utilizados para medir formas de onda ópticas y eléctricas.

[^5]
Anexo F - Intensidad Luminosa Inferior para Uniformidad Cromática

Un desafío no abordado en la versión anterior de este documento es la determinación de un límite de intensidad luminosa para medir la uniformidad de la cromaticidad. La Figura F-1 muestra una distribución de temperatura de color correlacionada (CCT) para una lámpara bajo ensayo. Los datos muestran un cambio gradual de 2900 K a 3200 K , con cambios abruptos del orden de 100 K . La Figura F-2 muestra una distribución de temperatura de color correlacionada para la misma lámpara bajo prueba usando un goniómetro diferente. El mismo cambio gradual está presente, pero \sin los cambios abruptos.

Figura F-1. Distribución de temperatura de color correlacionada para una lámpara de prueba.

Figura F-2. Distribución de temperatura de color correlacionada para la lámpara de prueba que se muestra en la Figura E-1 (Anexo E), sistema de goniómetro diferente.

Sin caracterizar las capacidades del sistema de medición, es difícil determinar qué medición es la correcta. El gráfico en la Figura $\mathrm{F}-1$ puede ser inexacto porque la relación señal/ruido es demasiado pequeña, lo que resulta en cambios abruptos. El gráfico en la Figura F-2 puede ser inexacto porque el sistema de detección puede no tener la resolución analógica a digital necesaria (número de bits) para detectar los cambios a pesar de que el sistema de goniómetro tiene la resolución de pantalla adecuada.

Caracterizar el sistema de medición para las capacidades de señal/ruido. Se adapta una lámpara incandescente con un revestimiento pavonado o muy mate y cinco medios-planos se miden para las coordenadas de cromaticidad. La lámpara produce aproximadamente 97 lm y , por lo tanto, basado en una distribución uniforme, tiene una intensidad luminosa de 7.8 cd . La Figura F-3 muestra la distribución de temperatura de color correlacionada para el conjunto de mediciones descrito en la Sección 9.5. El $\Delta u^{\prime} v{ }^{\prime}$ calculado para las medidas que se muestra en la Figura F-3 es 0.00013. En lugar de utilizar lámparas que producen diferentes valores de intensidad luminosa, se redujo el tiempo de integración. creando la misma dependencia que resultaría de un cambio de lámpara.

Figura F-3. La distribución de la temperatura de color correlacionada (CCT) para el conjunto de mediciones descritas en la Sección 9.2 para una lámpara incandescente con recubrimiento opal muy pavonado.

La Figura F-4 muestra la dependencia de $\Delta u^{\prime} v^{\prime}$ (descrita en la Sección 9.5) versus la intensidad luminosa. El cambio es abrupto en el punto donde el ruido domina la señal. Por lo tanto, para este sistema de goniómetro, se requiere una intensidad luminosa mínima de 0.028 cd para medir un $\Delta u^{\prime} v^{\prime}$ mínimo de 0.0015 .

Figura F-4. $\Delta u^{\prime} v^{\prime}$ versus la intensidad luminosa; el inserto expande la región alrededor del área donde aumenta rápidamente.

Referencias

1 Illuminating Engineering Society. TM-16-17; Solid State Lighting Sources and Systems. New York: IES; 2017.
2 International Standards Organization (ISO) and International Electrotechnical Commission (IEC). Uncertainty of Measurement - Part 4: Role of Measurement Uncertainty in Conformity Assessment. Geneva: IEC; 2012. (ISO/IEC Guide 98-4: 2012. Also: JCGM 106:2012).

3 Illuminating Engineering Society. LM-82-12; IES Approved Method for the Characterization of LED Light Engines and LED Lamps for Electrical and Photometric Properties as a Function of Temperature. New York: IES; 2012.

4 UL, LLC. ANSI/UL. 1598-2008: UL Standard for Safety Luminaires. Sec. 19.7 and 19.10-16. Northbrook, III.: UL; 2008.
5 UL, LLC. ANSI/UL 153-2014; UL Standard for Safety Portable Electric Luminaires. Northbrook, III.: UL; 2014.
6 International Standards Organization (ISO) and International Commission on Illumination (CIE). Characterization of the Performance of Illuminance Meters and Luminance Meters. Vienna: CIE; 2014. (ISO/CIE 19476:2014. Also: CIE S 023/E:2013).

7 Illuminating Engineering Society. LM-20-13; IES Approved Method: Photometry of Reflector Type Lamps. New York: IES; 2015.

8 Illuminating Engineering Society. LM-46-04/R14; IESNA Approved Method for Photometric Testing of Indoor Luminaires Using High Intensity Discharge or Incandescent Filament Lamps. New York: IES; 2015.

9 Miller CC, Hastings H, Nadal ME. A snapshot of 118 solid state lighting testing laboratories' capabilities. LEUKOS. 2016 Jun 23:47-56. DOl:10.1080/15502724.2016.1189834.

10 Illuminating Engineering Society. ANSI/IES TM-30-18; IES Method for Evaluating Light Source Color Rendition. New York: IES; 2018.

[^0]: * "RMS" significa raíz cuadrática media y es una forma de expresar una cantidad de tensión en AC o corriente en términos de equivalencia funcional en DC . Por ejemplo, $10 \mathrm{~V} A C$ RMS es la cantidad de tensión eléctrica que produciría la misma cantidad de calor. disipación a través de una resistencia de valor dado como 10 V en DC La tensión RMS también se conoce como el valor "equivalente" o "equivalente DC" de una tensión o corriente AC. Para una onda sinusoidal, el valor RMS es aproximadamente 0,707 de su valor máximo. Fuente: Todo sobre circuitos. (Consultado el 23 de febrero del 2018) www.allaboutcircuits.com/textbook/alternating-current/chpt-l/ mediciones • ac-magnitud /

[^1]: Nota I: En este documento, las condiciones indicadas incluyen un intervalo de tolerancia.

[^2]: *Nota del traductor: El Adaptamiento refiere al tiempo de funcionamiento del producto SSL de ensayo durante un número determinado de horas desde una nueva condición. Los datos fotométricos obtenidos inmediatamente después de este tiempo de adaptamiento se denominan datos "iniciales".

[^3]: * Miller CC, Hastings H, Nadal ME. Una instantánea de 118 capacidades de laboratorios de pruebas de iluminación de estado sólido, LEUKOS. 23 de junio de 2016: 47-56 DOI: 10.1080/15502724.2016.1189834 ** httg//www.itl.nistoov/div898/handbook/eda/section3/normprpl.htm (Consultado en marzo 5 2018).

[^4]: *Guía de ISO / IEC 98--4: 2012 (JCGM 106) Incertidumbre de medición - Parte 4: Papel de la evaluación de incertidumbre de medición

[^5]: * CCD. Un dispositivo de carga acoplada; un detector de matriz multicanal a base de silicio de luz ultravioleta, visible e infrarroja cercana. Fuente: Horiba Scientific. (Consultado el 2 de marzo de 2018) http://www.horiba.com/us/es/scientiflc/products/raman-spectroscopy/raman-academy/raman-faqs/what-is-a-ccd-detector/

